3618 independent reflections

 $R_{\rm int} = 0.035$

2385 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-Chloro-6-morpholino-N²-(2,4,4trimethylpentan-2-yl)-1,3,5-triazin-2amine

Yi-Ping Jiang,^a* Ting Qiu,^a Liang-En Wang^a and Jia-Ning Wang^b

^aCollege of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350002, People's Republic of China, and ^bShandong Academy of Sciences, Jinan 300072, People's Republic of China

Correspondence e-mail: jiangyiping07@yahoo.com.cn

Received 3 June 2007; accepted 7 June 2007

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.003 Å; R factor = 0.042; wR factor = 0.114; data-to-parameter ratio = 17.4.

The title compound, C₁₅H₂₆ClN₅O, was synthesized by the reaction of 2,4,6-trichloro-1,3,5-triazine with 2,4,4-trimethylpentan-2-amine and morpholine. The triazine ring is planar and the morpholine ring displays a typical chair conformation. Intermolecular $N-H\cdots O$ hydrogen bonding is present in the crystal structure.

Related literature

For general background, see Borzatta & Carrozza (1991). For a related structure, see Deng et al. (2006). For synthesis, see Kaiser & Thurston (1951).

Experimental

Crystal data

C ₁₅ H ₂₆ ClN ₅ O	V = 1769.0 (7) Å ³
$M_r = 327.86$	Z = 4
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 14.119 (3) Å	$\mu = 0.23 \text{ mm}^{-1}$
b = 7.4964 (17) Å	T = 294 (2) K
c = 17.083 (4) Å	$0.24 \times 0.18 \times 0.12 \text{ mm}$
$\beta = 101.939 \ (4)^{\circ}$	

Data collection

Bruker SMART 1000 CCD areadetector diffractometer Absorption correction: none 9840 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.042$	H atoms treated by a mixture of
$wR(F^2) = 0.114$	independent and constrained
S = 1.00	refinement
3618 reflections	$\Delta \rho_{\rm max} = 0.15 \text{ e} \text{ Å}^{-3}$
208 parameters	$\Delta \rho_{\rm min} = -0.22 \text{ e} \text{ Å}^{-3}$
1 restraint	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N4-H4\cdots O1^i$	0.891 (9)	2.197 (10)	3.076 (2)	168.9 (17)
Symmetry code: (i)	$x + 1 - y + 3 \pi$	L 1		

Symmetry code: (i) $x + \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2270).

References

- Borzatta, V. & Carrozza, P. (1991). European Patent EP 0 462 069.
- Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Deng, Y., Wang, X.-J., Wen, F., Wang, L. & Zhang, Y. (2006). Acta Cryst. E62, 05207-05208.
- Kaiser, D. W. & Thurston, J. T. (1951). J. Am. Chem. Soc. 73, 2984-2986.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2007). E63, o3173 [doi:10.1107/S1600536807027924]

4-Chloro-6-morpholino-N²-(2,4,4-trimethylpentan-2-yl)-1,3,5-triazin-2-amine

Y.-P. Jiang, T. Qiu, L.-E. Wang and J.-N. Wang

Comment

The title compound is an important intermediate of hindered light stabilizers (Borzatta & Carrozza, 1991). These compounds containing triazine ring are widely used (Deng *et al.*, 2006). We report here the crystal structure of the title compound (Fig. 1). The triazine ring in the title compound is essentially planar with an r.m.s. deviation from the mean plane of 0.009 Å.

Experimental

The title compound was prepared according to the method of Kaiser & Thurston (1951). 2,4,6-Trichloro-1,3,5-triazine (40.0 g, 0.217 mol) was dissolved in toluene (120 ml) and then cooled to 278 K. With stirring, a solution of 2,4,4-trimethylpentan-2-amine (27.5 g, 0.213 mol) in toluene (50 ml) was added dropwise to the mixture over a period of 0.5 h. Then a solution of Na₂CO₃ (23.02 g, 0.217 mol) in water (50 ml) was added dropwise for 0.5 h. The mixture was stirred at 273–278 K for a further 3 h. Morpholine (18.9 g, 0.217 mol) and solid Na₂CO₃ (23.02 g, 0.217 mol) were added to the mixture, keeping temperature at 338 k for 5 h. The title compound (54.91 g) was obtained in powder form in a yield of 78.6%. Single crystals of the title compound were obtained by slow evaporation of a methanol solution.

Refinement

Imino H4 atom was located in a difference Fourier map and isotropically refined with a restraint of O—H = 0.90 ± 0.01 Å. Other H atoms were positioned geometrically with C—H = 0.96-0.97 Å, and refined in riding mode with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl groups or $1.2U_{eq}(C)$ for others.

Figures

Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

Fig. 2. The unit cell packing diagram of the title compound.

Crystal data	
C ₁₅ H ₂₆ ClN ₅ O	$F_{000} = 704$
$M_r = 327.86$	$D_{\rm x} = 1.231 {\rm Mg m}^{-3}$
Monoclinic, $P2_1/n$	Melting point: 369-371 K
Hall symbol: -P 2yn	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
<i>a</i> = 14.119 (3) Å	Cell parameters from 2545 reflections
<i>b</i> = 7.4964 (17) Å	$\theta = 2.9 - 24.5^{\circ}$
c = 17.083 (4) Å	$\mu = 0.23 \text{ mm}^{-1}$
$\beta = 101.939 \ (4)^{\circ}$	T = 294 (2) K
$V = 1769.0 (7) \text{ Å}^3$	Prism, colourless
Z = 4	$0.24 \times 0.18 \times 0.12 \text{ mm}$

Data collection

Bruker SMART 1000 CCD area-detector diffractometer	2385 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.035$
Monochromator: graphite	$\theta_{\text{max}} = 26.7^{\circ}$
T = 294(2) K	$\theta_{\min} = 1.7^{\circ}$
φ and ω scans	$h = -16 \rightarrow 17$
Absorption correction: none	$k = -7 \rightarrow 9$
9840 measured reflections	$l = -21 \rightarrow 17$
3618 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.042$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.114$	$w = 1/[\sigma^2(F_0^2) + (0.0549P)^2 + 0.2056P]$

	where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.00	$(\Delta/\sigma)_{\text{max}} = 0.001$
3618 reflections	$\Delta \rho_{max} = 0.15 \text{ e} \text{ Å}^{-3}$
208 parameters	$\Delta \rho_{min} = -0.22 \text{ e } \text{\AA}^{-3}$
1 restraint	Extinction correction: none
Primary atom site location: structure-invariant direct	

methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
Cl1	0.43258 (4)	0.68022 (8)	1.16149 (3)	0.05564 (19)
01	0.31616 (10)	0.8309 (2)	0.72604 (8)	0.0534 (4)
N1	0.43414 (11)	0.7080 (2)	1.01064 (9)	0.0402 (4)
N2	0.58416 (11)	0.7425 (2)	1.10318 (8)	0.0385 (4)
N3	0.57800 (10)	0.7775 (2)	0.96303 (8)	0.0385 (4)
N4	0.72149 (11)	0.8004 (2)	1.05739 (9)	0.0419 (4)
N5	0.43047 (11)	0.7482 (2)	0.87630 (9)	0.0466 (4)
C1	0.48256 (13)	0.7441 (2)	0.95198 (10)	0.0368 (4)
C2	0.49106 (13)	0.7137 (2)	1.08183 (11)	0.0373 (4)
C3	0.62534 (12)	0.7724 (2)	1.03887 (10)	0.0344 (4)
C4	0.47478 (15)	0.7818 (3)	0.80787 (11)	0.0532 (6)
H4A	0.4837	0.6699	0.7818	0.064*
H4B	0.5378	0.8366	0.8257	0.064*
C5	0.41114 (15)	0.9024 (3)	0.75028 (12)	0.0528 (5)
H5A	0.4075	1.0178	0.7752	0.063*
H5B	0.4392	0.9197	0.7036	0.063*
C6	0.27284 (14)	0.8130 (3)	0.79388 (12)	0.0518 (5)
H6A	0.2075	0.7675	0.7768	0.062*
H6B	0.2688	0.9294	0.8178	0.062*
C7	0.32985 (14)	0.6891 (3)	0.85542 (12)	0.0506 (5)
H7A	0.3022	0.6883	0.9029	0.061*
H7B	0.3269	0.5688	0.8342	0.061*
C8	0.78825 (13)	0.8290 (3)	1.00235 (10)	0.0390 (4)
С9	0.88419 (15)	0.8807 (3)	1.05725 (13)	0.0624 (6)
H9A	0.8739	0.9798	1.0901	0.094*

H9B	0.9300	0.9137	1.0254	0.094*
H9C	0.9088	0.7812	1.0907	0.094*
C10	0.75325 (16)	0.9854 (3)	0.94675 (13)	0.0574 (6)
H10A	0.6952	0.9521	0.9096	0.086*
H10B	0.8024	1.0169	0.9179	0.086*
H10C	0.7401	1.0858	0.9778	0.086*
C11	0.79641 (13)	0.6485 (2)	0.96018 (11)	0.0400 (4)
H11A	0.7311	0.6017	0.9451	0.048*
H11B	0.8315	0.5688	1.0008	0.048*
C12	0.84258 (13)	0.6268 (3)	0.88572 (11)	0.0458 (5)
C13	0.85638 (17)	0.4252 (3)	0.87652 (14)	0.0687 (7)
H13A	0.7955	0.3656	0.8732	0.103*
H13B	0.9022	0.3813	0.9220	0.103*
H13C	0.8801	0.4028	0.8287	0.103*
C14	0.94073 (16)	0.7175 (3)	0.89346 (15)	0.0703 (7)
H14A	0.9672	0.6897	0.8475	0.105*
H14B	0.9838	0.6757	0.9409	0.105*
H14C	0.9329	0.8443	0.8968	0.105*
C15	0.77405 (17)	0.6911 (3)	0.80975 (12)	0.0640 (6)
H15A	0.7701	0.8189	0.8104	0.096*
H15B	0.7109	0.6412	0.8073	0.096*
H15C	0.7981	0.6536	0.7638	0.096*
H4	0.7492 (13)	0.778 (2)	1.1082 (6)	0.046 (6)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0497 (3)	0.0763 (4)	0.0457 (3)	-0.0021 (3)	0.0209 (2)	0.0055 (3)
01	0.0470 (8)	0.0700 (10)	0.0372 (7)	-0.0010 (7)	-0.0050 (6)	-0.0001 (7)
N1	0.0337 (8)	0.0479 (10)	0.0386 (9)	-0.0018 (7)	0.0062 (7)	0.0017 (7)
N2	0.0345 (9)	0.0487 (10)	0.0317 (8)	0.0000 (7)	0.0058 (7)	-0.0015 (7)
N3	0.0315 (8)	0.0501 (10)	0.0325 (8)	-0.0008 (7)	0.0029 (6)	-0.0006 (7)
N4	0.0319 (8)	0.0616 (11)	0.0310 (8)	-0.0034 (7)	0.0036 (7)	-0.0017 (8)
N5	0.0317 (9)	0.0696 (12)	0.0356 (9)	-0.0029 (8)	-0.0001 (7)	0.0061 (8)
C1	0.0362 (10)	0.0365 (10)	0.0362 (10)	0.0020 (8)	0.0044 (8)	0.0018 (8)
C2	0.0388 (10)	0.0379 (11)	0.0369 (10)	0.0012 (8)	0.0114 (8)	-0.0008 (8)
C3	0.0320 (9)	0.0380 (11)	0.0325 (9)	0.0006 (8)	0.0053 (8)	-0.0019 (8)
C4	0.0396 (11)	0.0823 (17)	0.0363 (11)	0.0022 (10)	0.0048 (9)	0.0043 (11)
C5	0.0512 (13)	0.0620 (14)	0.0416 (11)	-0.0059 (10)	0.0012 (9)	0.0019 (10)
C6	0.0386 (11)	0.0620 (14)	0.0497 (12)	0.0023 (10)	-0.0029 (9)	-0.0047 (11)
C7	0.0397 (11)	0.0608 (14)	0.0461 (11)	-0.0087 (10)	-0.0032 (9)	0.0011 (10)
C8	0.0326 (9)	0.0482 (12)	0.0367 (10)	-0.0047 (8)	0.0082 (8)	0.0016 (9)
С9	0.0423 (12)	0.0892 (18)	0.0562 (13)	-0.0200 (12)	0.0114 (10)	-0.0147 (13)
C10	0.0591 (14)	0.0479 (14)	0.0699 (14)	0.0007 (10)	0.0244 (11)	0.0082 (11)
C11	0.0342 (10)	0.0456 (12)	0.0396 (10)	-0.0004 (8)	0.0061 (8)	0.0061 (9)
C12	0.0399 (11)	0.0559 (14)	0.0432 (11)	-0.0027 (9)	0.0119 (9)	-0.0034 (10)
C13	0.0656 (15)	0.0692 (17)	0.0730 (16)	0.0102 (13)	0.0182 (12)	-0.0128 (13)
C14	0.0497 (14)	0.099 (2)	0.0697 (16)	-0.0147 (13)	0.0286 (12)	-0.0141 (14)

C15	0.0684 (15)	0.0829 (18)	0.0412 (12)	-0.0026 (13)	0.0122 (11)	0.0033 (12)	
Geometric p	arameters (Å, °)						
Cl1—C2	1 7497 (19		C8—(C10	1.5	26 (3)	
01-C5		1.424 (2)	C8—(C9	1.5	1.530 (3)	
01-C6		1 424 (2)	C8—1	C11	1.5	1 548 (3)	
N1-C2		1.32(2)	C9—1	Н9А	0.9	500	
N1-C1		1.352 (2)	C9—1	H9B	0.9	0.9600	
N2—C2		1.307 (2)	C9—]	H9C	0.9	500	
N2—C3		1.364 (2)	C10–	-H10A	0.9	500	
N3—C3		1.330 (2)	C10–	-H10B	0.9	500	
N3—C1		1.345 (2)	C10–	-H10C	0.9	500	
N4—C3		1.345 (2)	C11–	-C12	1.5	53 (2)	
N4—C8		1.478 (2)	C11-	-H11A	0.9	700	
N4—H4		0.891 (9)	C11-	-H11B	0.9	700	
N5-C1		1.349 (2)	C12—	-C14	1.52	25 (3)	
N5—C4		1.457 (2)	C12—	-C15	1.52	28 (3)	
N5—C7		1.460 (2)	C12—	-C13	1.5	36 (3)	
C4—C5		1.493 (3)	C13—	-H13A	0.9	500	
C4—H4A		0.9700	C13—	-H13B	0.9	500	
C4—H4B		0.9700	C13—	-H13C	0.9	500	
C5—H5A		0.9700	C14—	-H14A	0.9	500	
С5—Н5В		0.9700	C14—	-H14B	0.9	500	
C6—C7		1.505 (3)	C14—	-H14C	0.9	500	
С6—Н6А		0.9700	C15—	-H15A	0.9	500	
С6—Н6В		0.9700	C15—	-H15B	0.9	500	
C7—H7A		0.9700	C15—	-H15C	0.9	500	
C7—H7B		0.9700					
C5—O1—C6	,)	109.63 (14)	N4	C8—C11	106	.76 (14)	
C2—N1—C1		111.93 (15)	C10–	-C8-C11	115	.32 (15)	
C2—N2—C3	3	111.97 (15)	С9—(C8—C11	111	.43 (16)	
C3—N3—C1		114.73 (15)	C8—(С9—Н9А	109	.5	
C3—N4—C8	3	128.20 (14)	C8—(С9—Н9В	109	.5	
C3—N4—H4	1	114.7 (13)	H9A-	—С9—Н9В	109	.5	
C8—N4—H4	1	116.0 (13)	C8—(С9—Н9С	109	.5	
C1—N5—C4	Ļ	122.23 (16)	H9A-	—С9—Н9С	109	.5	
C1—N5—C7	7	122.48 (16)	H9B-	С9Н9С	109	.5	
C4—N5—C7	7	114.44 (15)	C8—4	С10—Н10А	109	.5	
N3-C1-N5	5	117.51 (16)	C8—4	С10—Н10В	109	.5	
N3-C1-N1	l	125.37 (16)	H10A	—С10—Н10В	109	.5	
N5-C1-N1	l	117.12 (16)	C8—4	С10—Н10С	109	.5	
N2-C2-N1	l	130.66 (17)	H10A	—С10—Н10С	109	.5	
N2-C2-Cl	1	114.57 (14)	H10B		109	.5	
N1—C2—Cl	1	114.77 (14)	C8—4	C11—C12	123	.87 (15)	
N3—C3—N4	1	120.26 (16)	C8—4	C11—H11A	106	.4	
N3-C3-N2	2	125.28 (16)	C12-	-C11—H11A	106	.4	
N4-C3-N2	2	114.46 (15)	C8—4	C11—H11B	106	.4	
N5-C4-C5	5	109.48 (16)	C12—	-C11—H11B	106	.4	

N5—C4—H4A	109.8	H11A—C11—H11B		106.4
С5—С4—Н4А	109.8	C14—C12—C15		109.72 (19)
N5—C4—H4B	109.8	C14—C12—C13		108.39 (18)
C5—C4—H4B	109.8	C15—C12—C13		107.16 (19)
H4A—C4—H4B	108.2	C14—C12—C11		114.21 (17)
O1—C5—C4	111.46 (18)	C15-C12-C11		111.30 (16)
O1—C5—H5A	109.3	C13—C12—C11		105.71 (16)
C4—C5—H5A	109.3	C12—C13—H13A		109.5
O1—C5—H5B	109.3	C12—C13—H13B		109.5
C4—C5—H5B	109.3	H13A—C13—H13B		109.5
H5A—C5—H5B	108.0	C12—C13—H13C		109.5
O1—C6—C7	111.63 (16)	H13A—C13—H13C		109.5
O1—C6—H6A	109.3	H13B-C13-H13C		109.5
С7—С6—Н6А	109.3	C12—C14—H14A		109.5
O1—C6—H6B	109.3	C12-C14-H14B		109.5
С7—С6—Н6В	109.3	H14A—C14—H14B		109.5
H6A—C6—H6B	108.0	C12-C14-H14C		109.5
N5—C7—C6	109.64 (17)	H14A—C14—H14C		109.5
N5—C7—H7A	109.7	H14B-C14-H14C		109.5
С6—С7—Н7А	109.7	C12—C15—H15A		109.5
N5—C7—H7B	109.7	C12—C15—H15B		109.5
С6—С7—Н7В	109.7	H15A—C15—H15B		109.5
H7A—C7—H7B	108.2	С12—С15—Н15С		109.5
N4—C8—C10	109.89 (15)	H15A—C15—H15C		109.5
N4—C8—C9	104.31 (14)	H15B—C15—H15C		109.5
C10—C8—C9	108.56 (17)			
C3—N3—C1—N5	179.69 (17)	C1-N5-C4-C5		-139.1 (2)
C3—N3—C1—N1	0.3 (3)	C7—N5—C4—C5		51.2 (2)
C4—N5—C1—N3	1.9 (3)	C6-01-C5-C4		61.8 (2)
C7—N5—C1—N3	170.86 (17)	N5-C4-C5-01		-56.2 (2)
C4—N5—C1—N1	-178.61 (17)	C5—O1—C6—C7		-60.6 (2)
C7—N5—C1—N1	-9.7 (3)	C1—N5—C7—C6		140.15 (19)
C2—N1—C1—N3	1.7 (3)	C4—N5—C7—C6		-50.1 (2)
C2-N1-C1-N5	-177.68 (17)	O1-C6-C7-N5		54.1 (2)
C3—N2—C2—N1	0.7 (3)	C3—N4—C8—C10		55.6 (2)
C3—N2—C2—Cl1	-178.35 (12)	C3—N4—C8—C9		171.8 (2)
C1—N1—C2—N2	-2.3 (3)	C3—N4—C8—C11		-70.1 (2)
C1—N1—C2—Cl1	176.73 (13)	N4-C8-C11-C12		167.39 (15)
C1—N3—C3—N4	178.78 (17)	C10—C8—C11—C12		45.0 (2)
C1—N3—C3—N2	-2.2 (3)	C9—C8—C11—C12		-79.3 (2)
C8—N4—C3—N3	-3.7 (3)	C8-C11-C12-C14		48.2 (3)
C8—N4—C3—N2	177.19 (17)	C8—C11—C12—C15		-76.7 (2)
C2—N2—C3—N3	1.8 (3)	C8—C11—C12—C13		167.27 (18)
C2—N2—C3—N4	-179.15 (17)			
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N4—H4…O1 ⁱ	0.891 (9)	2.197 (10)	3.076 (2)	168.9 (17)

Symmetry codes: (i) x+1/2, -y+3/2, z+1/2.

